Sums of Consecutive Integers
نویسندگان
چکیده
Wai Yan Pong ([email protected]) received his B.Sc. from the Chinese University of Hong Kong and his M.Sc. and Ph.D. from the University of Illinois at Chicago. He was a Doob Research Assistant Professor at the University of Illinois at Urbana-Champaign for three years. He then moved to California and is now teaching at California State University, Dominguez Hills. His research interests are in model theory and number theory.
منابع مشابه
A NOTE ON THE SUMS OF POWERS OF CONSECUTIVE q-INTEGERS
In this paper we construct the q-analogue of Barnes's Bernoulli numbers and polynomials of degree 2, for positive even integers, which is an answer to a part of Schlosser's question. For positive odd integers, Schlosser's question is still open. Finally, we will treat the q-analogue of the sums of powers of consecutive integers.
متن کاملOn the alternating sums of powers of consecutive q-integers
In this paper we construct q-Genocchi numbers and polynomials. By using these numbers and polynomials, we investigate the q-analogue of alternating sums of powers of consecutive integers due to Euler. 2000 Mathematics Subject Classification : 11S80, 11B68
متن کاملq-ANALOGUES OF THE SUMS OF POWERS OF CONSECUTIVE INTEGERS
Let n, k be the positive integers (k > 1), and let Sn,q(k) be the sums of the n-th powers of positive q-integers up to k − 1: Sn,q(k) = ∑k−1 l=0 ql. Following an idea due to J. Bernoulli, we explore a formula for Sn,q(k).
متن کاملOn a Congruence Modulo n Involving Two Consecutive Sums of Powers
For various positive integers k, the sums of kth powers of the first n positive integers, Sk(n) := 1 k+2k+ · · ·+nk, are some of the most popular sums in all of mathematics. In this note we prove a congruence modulo n3 involving two consecutive sums S2k(n) and S2k+1(n). This congruence allows us to establish an equivalent formulation of Giuga’s conjecture. Moreover, if k is even and n ≥ 5 is a ...
متن کاملA Note on the Alternating Sums of Powers of Consecutive Integers
For n, k ∈ Z≥0, let Tn(k) be the alternating sums of the n-th powers of positive integers up to k − 1: Tn(k) = ∑ k−1 l=0 (−1)l. Following an idea due to Euler, we give the below formula for Tn(k): Tn(k) = (−1) 2 n−1 ∑ l=0 (n l ) Elk n−l + En 2 (
متن کاملq-Analogues of the Sums of Consecutive Integers, Squares, Cubes, Quarts and Quints
We first show how a special case of Jackson’s 8φ7 summation immediately gives Warnaar’s q-analogue of the sum of the first n cubes, as well as q-analogues of the sums of the first n integers and first n squares. Similarly, by appropriately specializing Bailey’s terminating very-well-poised balanced 10φ9 transformation and applying the terminating very-well-poised 6φ5 summation, we find q-analog...
متن کامل