Sums of Consecutive Integers

نویسندگان

  • Wai Yan Pong
  • Wai Yan
چکیده

Wai Yan Pong ([email protected]) received his B.Sc. from the Chinese University of Hong Kong and his M.Sc. and Ph.D. from the University of Illinois at Chicago. He was a Doob Research Assistant Professor at the University of Illinois at Urbana-Champaign for three years. He then moved to California and is now teaching at California State University, Dominguez Hills. His research interests are in model theory and number theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A NOTE ON THE SUMS OF POWERS OF CONSECUTIVE q-INTEGERS

In this paper we construct the q-analogue of Barnes's Bernoulli numbers and polynomials of degree 2, for positive even integers, which is an answer to a part of Schlosser's question. For positive odd integers, Schlosser's question is still open. Finally, we will treat the q-analogue of the sums of powers of consecutive integers.

متن کامل

On the alternating sums of powers of consecutive q-integers

In this paper we construct q-Genocchi numbers and polynomials. By using these numbers and polynomials, we investigate the q-analogue of alternating sums of powers of consecutive integers due to Euler. 2000 Mathematics Subject Classification : 11S80, 11B68

متن کامل

q-ANALOGUES OF THE SUMS OF POWERS OF CONSECUTIVE INTEGERS

Let n, k be the positive integers (k > 1), and let Sn,q(k) be the sums of the n-th powers of positive q-integers up to k − 1: Sn,q(k) = ∑k−1 l=0 ql. Following an idea due to J. Bernoulli, we explore a formula for Sn,q(k).

متن کامل

On a Congruence Modulo n Involving Two Consecutive Sums of Powers

For various positive integers k, the sums of kth powers of the first n positive integers, Sk(n) := 1 k+2k+ · · ·+nk, are some of the most popular sums in all of mathematics. In this note we prove a congruence modulo n3 involving two consecutive sums S2k(n) and S2k+1(n). This congruence allows us to establish an equivalent formulation of Giuga’s conjecture. Moreover, if k is even and n ≥ 5 is a ...

متن کامل

A Note on the Alternating Sums of Powers of Consecutive Integers

For n, k ∈ Z≥0, let Tn(k) be the alternating sums of the n-th powers of positive integers up to k − 1: Tn(k) = ∑ k−1 l=0 (−1)l. Following an idea due to Euler, we give the below formula for Tn(k): Tn(k) = (−1) 2 n−1 ∑ l=0 (n l ) Elk n−l + En 2 (

متن کامل

q-Analogues of the Sums of Consecutive Integers, Squares, Cubes, Quarts and Quints

We first show how a special case of Jackson’s 8φ7 summation immediately gives Warnaar’s q-analogue of the sum of the first n cubes, as well as q-analogues of the sums of the first n integers and first n squares. Similarly, by appropriately specializing Bailey’s terminating very-well-poised balanced 10φ9 transformation and applying the terminating very-well-poised 6φ5 summation, we find q-analog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008